Choosing the right glove is of vital importance to ensure you have the best means of protection against hazards in the workplace. However, not all gloves offer the same two-way level of barrier protection that is required to protect both you and those in their care. Different tasks call for different requirements, so it’s important to have an understanding of your options and how to find the most suitable hand glove.
Glove material plays an important role in glove selection, with each type providing different protective properties, texture, flexibility and thickness (‘Protecting Hands Against Chemical Exposures’ 2000). Natural rubber latex, nitrile and polyvinyl chloride glove materials are typically found in examination gloves, whereas natural rubber latex and polyisoprene are most commonly found in surgical gloves.
Natural Rubber Latex (NRL)
Discovered by Dr William Halsted in the 19th century at Johns Hopkins Hospital, natural rubber latex gloves were introduced to protect the hands of nurses and assistants in the operating theatre, who presented with symptoms of dermatitis (Lathan 2010).
NRL gloves are best known for their high elasticity and are considered to have good fit and comfort. The soft and stretchy properties of NRL gloves make it an ideal material to suit any palm shape and size. When compared to other materials, NRL does not provide as sufficient protection against harsh chemicals and chemotherapy drugs.
While latex exam and surgical gloves have been popular in healthcare, long-term exposure to NRL gloves have been proven to potentially trigger an allergic response and present a danger to some medical staff and patients.
Nitrile
Neil Tillotson and Luc DeBecker invented and patented nitrile rubber gloves in 1990, a technology made with nitrile butadiene latex rubber elastomeric material (US International Trade Commission 2010). Synthetic nitrile gloves were quickly adopted in healthcare due to increases in latex allergies and its other advantages.
Nitrile gloves have superior puncture resistance compared to NRL, with greater strength and durability. This material is a safe alternative for latex sensitive individuals, and has excellent chemical resistance to oils, harsh solvents, acids, broad range of chemicals, and most chemotherapy drugs.
Polyisoprene
Following the combined efforts of scientists at B.F. Goodrich Co in mid-1950s, Samuel E. Horne Jr is credited for polymerizing synthetic polyisoprene using Ziegler catalysts in 1954 (Rohrer 2014). The creation behind synthetic rubber stemmed from a need to meet the at the end of the 19th Century for mainstream products (automobiles), and transformed into a way towards improving technology (‘Isoprene’ 2006). As a rubber glove manufacturer, B.F. Goodrich Co, created a patent for producing synthetic polyisoprene, which has continued to be adopted by large glove manufacturers. In the movement towards a more latex-free work environment, polyisoprene surgical gloves represent the latest advancement in glove material technology.
Polyisoprene surgical gloves contain an almost identical molecular structure to natural rubber latex, which in turn possess great dexterity, tactility and comfort. To ensure you are using the safest type of polyisoprene gloves, it’s important to check that they are free of harmful chemical accelerators such as Diphenyl Guanidine (DPG) and Mercaptobenzothiazole (MBT).
Vinyl
The creation of vinyl (also known as polyvinyl chloride or PVC) was a surprise discovery made in 1872 by Eugen Baumann, a German chemist who, after leaving a flask in sunlight, found that heat could change the properties of vinyl chloride monomer from a fluid to a solid (Yousif et al. 2015). PVC has vastly expanded into many commercial products, with vinyl gloves becoming common in hospitality and aged care for its affordability.
Vinyl gloves are a good latex free alternative, but possess a very weak glove film, low chemical resistance, and have a tendency to break and puncture easily due to its low tensile strength (Rego et al. 1999).
Comparing Materials
Each material is defined by its own characteristics, which can heavily influence your choice of hand gloves. When making this decision, it is imperative to evaluate the long-term benefits of each material.
Table 1. Comparison of Glove Materials
MATERIAL TYPE | NRL | NITRILE | POLYISOPRENE | VINYL |
Barrier Protection |
|
|
|
|
Type I Allergies |
|
|
|
|
Fit and Comfort |
|
|
|
|
Chemical Resistance |
|
|
|
|
Value |
|
|
|
|
Recommended Glove |
|
|
|
|
References
RESOURCES
Knowledge Base
Product Sheets
MUN GLOBAL HQ
Lot 26, Jalan Perusahaan 1, Amari Business Park, Kawasan Perindustrian Batu Caves, 68100 Batu Caves, Selangor, Malaysia.
CONTACT US
T +603 6177 6488
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |